This work describes a parallel divide-and-conquer Delaunay triangulation scheme. This algorithm finds the affected zone, which covers the triangulation and may be modified when two sub-block triangulations are merged. Finding the affected zone can reduce the amount of data required to be transmitted between processors. The time complexity of the divide-and-conquer scheme remains O(n log n), and the affected region can be located in O(n) time steps, where n denotes the number of points. The code was implemented with C, FORTRAN and MPI, making it portable to many computer systems. Experimental results on an IBM SP2 show that a parallel efficiency of 44–95% for general distributions can be attained on a 16-node distributed memory system.